A Novel Core-Shell Microcapsule for Encapsulation and 3D Culture of Embryonic Stem Cells.

نویسندگان

  • Wujie Zhang
  • Shuting Zhao
  • Wei Rao
  • Jedidiah Snyder
  • Jung K Choi
  • Jifu Wang
  • Iftheker A Khan
  • Navid B Saleh
  • Peter J Mohler
  • Jianhua Yu
  • Thomas J Hund
  • Chuanbing Tang
  • Xiaoming He
چکیده

In this study, we report the preparation of a novel microcapsule of ~ 100 μm with a liquid (as compared to solid-like alginate hydrogel) core and an alginate-chitosan-alginate (ACA) shell for encapsulation and culture of embryonic stem (ES) cells in the miniaturized 3D space of the liquid core. Murine R1 ES cells cultured in the microcapsules were found to survive (> 90%) well and proliferate to form either a single aggregate of pluripotent cells or embryoid body (EB) of more differentiated cells in each microcapsule within 7 days, dependent on the culture medium used. This novel microcapsule technology allows massive production of the cell aggregates or EBs of uniform size and controllable pluripotency, which is important for the practical application of stem cell based therapy. Moreover, the semipermeable ACA shell was found to significantly reduce immunoglobulin G (IgG) binding to the encapsulated cells by up to 8.2 times, compared to non-encapsulated cardiac fibroblasts, mesenchymal stem cells, and ES cells. This reduction should minimize inflammatory and immune responses induced damage to the cells implanted in vivo becasue IgG binding is an important first step of the undesired host responses. Therefore, the ACA microcapsule with selective shell permeability should be of importance to advance the emerging cell-based medicine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid.

We present a microfluidic device generating three-dimensional (3D) coaxial flow by the addition of a simple hillock to produce an alginate core-shell microcapsule for the efficient formation of a cell spheroid. A hillock tapered at downstream of the two-dimensional focusing channel enables outside flow to enclose the core flow. The aqueous solution in the core flow was focused and surrounded by...

متن کامل

Alginate microcapsule as a 3D platform for propagation and differentiation of human embryonic stem cells (hESC) to different lineages.

Human embryonic stem cells (hESC) are emerging as an attractive alternative source for cell replacement therapy since they can be expanded in culture indefinitely and differentiated to any cell types in the body. Various types of biomaterials have also been used in stem cell cultures to provide a microenvironment mimicking the stem cell niche(1-3). The latter is important for promoting cell-to-...

متن کامل

I-19: Surrogate Egg Shell Culture for The Analysis of Avian Stem Cell Fate

Background: The chick embryo is a classical model to study embryonic development. However, most researchers have not studied the effect of embryonic manipulation on chick hatchability. To determine the effect of egg orientation and type of sealing film on the hatchability of cultured embryos, and to determine the fate of adulte stem cells injected into the blastoderm. Materials and Methods: Win...

متن کامل

Survival, proliferation, and migration of human meningioma stem-like cells in a nanopeptide scaffold

Objective(s): In order to grow cells in a three-dimensional (3D) microenvironment, self-assembling peptides, such as PuraMatrix, have emerged with potential to mimic the extracellular matrix. The aim of the present study was to investigate the influence of the self-assembling peptide on the morphology, survival, proliferation rate, migration potential, and differentiation of human meningioma st...

متن کامل

A Novel in vitro Co-culture Systems on Differentiation of Embryonic Stem Cells into Oocyte-like Cells in an in vivo Manner

Background:Differentiation of Embryonic Stem Cells into Oocyte-like cells in vitro is challenging. Successful derivation of oocyte from stem cells can provide an alternative source for curing ovogenesis problems. The current study aims to demonstrate a new protocol with two different types of media for differentiating embryonic stem cells (ESCs) into oocyte-like cells ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of materials chemistry. B

دوره 2013 7  شماره 

صفحات  -

تاریخ انتشار 2013